首页 >  西方历史 > 文章详情页

柏拉图 的资料

正多面体,是指多面体的各个面都是全等的正多边形,并且各个多面角都是全等的多面角。正多面体一共只有5个,最早由古希腊哲学家柏拉图发现,所以也称柏拉图多面体。

柏拉图认为世界由四古典元素组成,其形状如正多面体中的其中四个。

火的热人感到尖锐和刺痛,好像小小的正四面体。空气是用正八面体制成的,可以粗略感受到,它极细小的结合体十分顺滑。当水放到人的手上,它会自然流出,那它就应该是由很多小球所组成,好像正二十面体。土与其他的元素相异,因为它可以被堆栈,正如正六面体(正立方体)。

剩下没有用的正多面体——正十二面体,柏拉图以不清晰的语调写:“神使用正十二面体以整理整个天空旳星座。”柏拉图的学生亚里士多德添加了第五个元素——以太,并认为天空是用此组成,但他没有将以太和正十二面体联系。

2 欧拉公式

我们知道,空间中的多面体由顶点、面、棱组成,将它们的数量简记为、、,现在来研究一下三者之间的关系,列个表:

类型顶点数面数棱数计算正四面体4462正六面体86122正八面体68122正十二面体2012302正二十面体1220302

我们发现,的值总是2,这是巧合吗?还是说这是正多面体满足的特有规律?

来看一个不规则多面体:类型顶点数面数棱数计算不规则多面体1610242

仍有,这似乎表明任意多面体的顶点数、面数、棱数都满足这个数量关系。

事实上,数学家欧拉证明了对于任意简单多面体,都有

这个恒等式成立,它被称之为多面体欧拉公式。

这里需要说明一下,所谓简单多面体指的是同胚于球面的多面体(同胚是一个拓扑学概念,你可以简单理解为如果在一个多面体内部吹气,它能膨胀变为一个球,那么可以认为它与球同胚)。

欧拉公式的完整形式是

这里的称为欧拉示性数,它是一个拓扑不变量,与空间体的性质有关,当为简单多面体时,有3 证明

现在我们来研究一下为什么对于简单多面体都成立。

我们以正六面体(即正方体)为例,假设在正六面体中,有

在这里是一个未知数,我们的目标是证明是常数.

可以通过一些简单的变换证明多面体欧拉公式,具体操作如下:

我们将正六面体进行“压缩”,使其变成上底面为小正方形的几何体。注意到在这个过程中,并没有改变原来的顶点数、棱数、面数,因此仍有这时再将其“拍扁”,使其成为一个二维图形。在这个由三维向二维转化的过程中,最终的图形相比原来的几何体其面数是少了的(因为上下底面合并为了同一个面),记二维图形的面数为,则有又因为顶点数、棱数不变,因此有在完成了“去面”的操作后,其二维图形的俯视图如下:这时我们在图形中加一条棱,图形就变成了如下:加了这条棱之后,可以发现最上面的区域被一分为二,因此对于整个图形来说,其面数会加一,但又由于其棱数加一,有因此仍有可见,“加棱”的操作并不会使的值发生变化。我们继续加棱,将其变为如下图形:这个图形的的值仍与原来的图形一致。

我们接着对这个图形进行处理,擦除其中一条边,会有什么结果?

还是和刚才的分析方法相类似,在擦除一条边之后,其面数就会减一,又由于“擦边”使得棱数也减一,因此有仍有可见,”擦边”也不会使的值发生变化。通过一系列“擦边”,图形会变化成一个“飞镖”的样子:

接下来就是最神奇的一步,擦去这个图形中的某个角,看看会发生什么!

擦去一个角,其面数会减一,其棱数会少二,其顶点数会少一,即因此对于来说,其值仍然是不发生变化的!即有“擦角”仍然不会使的值改变,那我们就放心大胆地擦吧!最终,图形会变为一条线段。我们在初中就知道,线段是一个一维图形,只有两个端点一条线,因此有所以因此至此,我们就证明了是一个常数,其值为,证明完毕。4 小结

事实上,对于任意简单多面体,我们都可以通过上述去面、加棱、擦边、去角等一系列操作将其变为一条线段,这个过程从三维几何体到二维图形再到一维线段,我们把它称之为“降维”过程。所以,欧拉公式对于任意简单多面体都是成立的。

还记得开头提到的柏拉图多面体吗?我们同样可以用欧拉公式证明正多面体的个数是有限个的。即满足是正多面体的顶点数、面数、棱数只可能是

这五种情况。证明过程在这里就不赘述了,感兴趣的同学可以自行探究。参考文献:[1]R·柯朗 H·罗宾. 什么是数学——对思想和方法的基本研究[M].复旦大学出版社,2012.

本文《柏拉图 的资料》由本网整理自互联网,转载请注明出处。