首页 >  西方历史 > 文章详情页

欧几里得 历史解读

此外,欧几里得在《几何原本》中还对完全数做了探究,他通过 2^(n-1)·(2^n-1) 的表达式发现头四个完全数的。

当 n=2: 2^1(2^2-1)=6 当 n=3: 2^2(2^3-1)=28 当 n=5: 2^4(2^5-1)=496 当 n=7: 2^6(2^7-1)=8128 一个偶数是完全数,当且仅当它具有如下形式:2^(n-1).(2^n-1),此事实的充分性由欧几里得证明,而必要性则由欧拉所证明。

其中2^(n)-1是素数,上面的6和28对应着n=2和3的情况。我们只要找到了一个形如2^(n)-1 的素数(即梅森素数),也就知道了一个偶完全数。在手算时代梅森素数可使人们更方便的计算完全数,在计算机时代更是得到了广泛深入的应用,计算机的CPU可以更方便的计算各种数。

尽管没有发现奇完全数,但是当代数学家奥斯丁·欧尔证明,若有奇完全数,则其形式必然是12p+ 1或36p+ 9的形式,其中p是素数。在10^300以下的自然数中奇完全数是不存在的。

首五个完全数是:

28

496

8128

33550336(8位)

欧几里得算法

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。

几何原本

《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作。这部书已经基本囊括了几何学从公元前7世纪到古希腊,一直到公元前4世纪–欧几里得生活时期–前后总共400多年的数学发展历史。

它不仅保存了许多古希腊早期的几何学理论,而且通过欧几里得开创性的系统整理和完整阐述,使这些远古的数学思想发扬光大。它开创了古典数论的研究,在一系列公理、定义、公设的基础上,创立了欧几里得几何学体系,成为用公理化方法建立起来的数学演绎体系的最早典范。

全书共分13卷。书中包含了5条”公理”、5条”公设”、23个定义和467个命题。

在每一卷内容当中,欧几里得都采用了与前人完全不同的叙述方式,即先提出公理、公设和定义,然后再由简到繁地证明它们。这使得全书的论述更加紧凑和明快。

而在整部书的内容安排上,也同样贯彻了他的这种独具匠心的安排。它由浅到深,从简至繁,先后论述了直边形、圆、比例论、相似形、数、立体几何以及穷竭法等内容。其中有关穷竭法的讨论,成为近代微积分思想的来源。

照欧氏几何学的体系,所有的定理都是从一些确定的、不需证明而礴然为真的基本命题即公理演绎出来的。在这种演绎推理中,对定理的每个证明必须或者以公理为前提,或者以先前就已被证明了的定理为前提,最后做出结论。对后世产生了深远的影响。

本文《欧几里得 历史解读》由本网整理自互联网,转载请注明出处。